

Protecciones Eléctricas

Docente: Nicolas Espinoza Quezada Nicolas.espinoza@cftsagustin.cl

CFT San Agustín - Año 2023

AE - Contenido

Antes de comenzar...

Hoy veremos

Calculo de Protecciones de alumbrado y fuerza contra sobrecargas y cortocircuitos

Módulo 9 - Instalaciones Eléctricas Domiciliaria

Circuitos

RIC N° 10 INSTALACIONES DE USO GENERAL

- 5.1.4.1 La capacidad de los circuitos de alumbrado (iluminación y enchufes) estará determinada por la potencia requerida por cada circuito, más un 10% de capacidad adicional disponible. El valor nominal de la capacidad del circuito, estará determinado por el valor nominal de corriente de la protección, inmediatamente superior, disponible en el mercado.
- 5.1.4.2 Se deberá asegurar la selectividad y coordinación de protecciones mediante un estudio de coordinación y selectividad el cual determinará las curvas de operación y nivel de ruptura de las protecciones. Se podrá utilizar como referencia la selección de curvas rápidas tipo B para circuitos de iluminación, curvas tipo C para circuitos de enchufes, curvas lentas tipo D o K en las protecciones generales, curvas tipo Z para protecciones de circuitos electrónicos y curvas MA para circuitos guardamotores (arrangue de motores y aplicaciones específicas).
- 5.1.4.4 La cantidad de centros que es posible instalar en un circuito se determinará igualando la suma de las potencias unitarias de cada centro conectado a él con el 90% del valor nominal de la capacidad del circuito.

CALCULO DE CAPACIDAD DE CORRIENTE EN INSTALACIONES DE ALUMBRADO.

$$\left| \begin{array}{l} I_{N} = \frac{\displaystyle \sum_{U=1}^{n} P_{U}}{0.9 \times V_{F} \times FP} \end{array} \right|_{MONOF \acute{A}SICA} \\ \left| \begin{array}{l} I_{N} = \frac{\displaystyle \sum_{U=1}^{n} P_{U}}{0.9 \times \sqrt{3} \times V_{L} \times FP} \end{array} \right|_{TRIF \acute{A}SICA} \\ \end{array} \right|_{TRIF \acute{A}SICA}$$

Donde:

I_N : Capacidad nominal del dispositivo de protección (A)

P_U: Potencia unitaria de cada centro conectado (W)

V_F: Tensión de fase del sistema (V)

V_L : Tensión de línea del sistema (V)

FP : Factor de potencia

CALCULO DE CAPACIDAD DE CORRIENTE EN INSTALACIONES DE FUERZA.

Se considera Instalación de Fuerza a toda aquella instalación en que la energía eléctrica se usa preferentemente para obtener energía mecánica y/o para intervenir en un proceso productivo industrial . Estas se deberán proteger contra la sobrecarga y el cortocircuito con dispositivos independientes , o combinados que respondan a las condiciones particulares .

Para la protección de sobrecarga en general, la capacidad nominal o corriente de ajuste del dispositivo de protección, deberá ser como máximo un 25% mas grande que la corriente del motor, si este tiene un factor de servicio mayor o igual a 1,15 y un 15% mayor para el caso de motores con factor de servicio inferior a 1,15.

El **factor de servicio** es la capacidad del motor para operar bajo una carga incrementada a corto plazo. Cuanto mayor sea la clasificación del F.S. de un motor, más duradero será el motor. Como ejemplo, un motor de 1-1/2 hp con un 1.5 F.S. puede proporcionar 2,25 hp de potencia durante un período corto.

CALCULO DE CAPACIDAD DE CORRIENTE EN INSTALACIONES DE FUERZA.

$$\left| \ I_{N} \right| = \frac{k \times P_{M}}{V_{F} \times FP \times \eta} \left|_{MONOFÁSICA} \right| \left| \ I_{N} \right| = \frac{k \times P_{M}}{\sqrt{3} \times V_{L} \times FP \times \eta} \left|_{TRIFÁSICA} \right|$$

Donde:

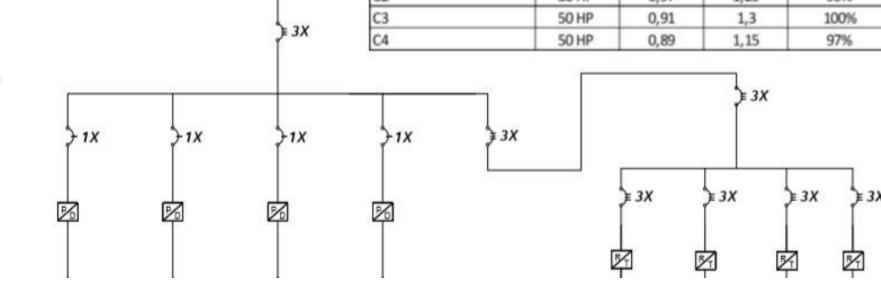
I_N : Capacidad nominal del dispositivo de protección (A)

P_M: Potencia nominal del motor (W)

V_F: Tensión de fase del sistema (V)

V_L : Tensión de línea del sistema (V)

FP : Factor de potencia


η : Rendimiento del motor

k : 1,25 para fs ≥1,15 y 1,15 para fs <1,15

ÁREA TECNOLÓGICA TNS EN REDES ELÉCTRICAS

Circuitos de Alumbrado	POTENCIA	FP	FS	RENDIMIENTO
C1	3,5 KW	0,93		
C2	5,2 KW	0,93		
C3	3,3 KW	0,93		
C4	6,5 KW	0,93		
Circuitos de Fuerza	POTENCIA	FP	FS	RENDIMIENTO
C1	80 HP	0,86	1,1	90%
C2	80 HP	0,97	1,25	95%
C3	50 HP	0,91	1,3	100%
C4	50 HP	0,89	1,15	97%

¿Qué aprendimos esta clase?

Módulo 9 - Instalaciones Eléctricas Domiciliaria

